

**Bachelor of Science (B.Sc.) Semester—V
(C.B.S.) Examination
MATHEMATICS
Paper—II
(M₁₀-Metric Space, Complex Integration and Algebra)**

Time—Three Hours]

[Maximum Marks—60

N.B. :— (1) Solve all the **FIVE** questions.
(2) All questions carry equal marks.
(3) Question No. **1** to **4** have an alternative.
Solve each question in full or its alternative in full.

UNIT—I

1. (A) Let A be a countable set, and let B_n be the set of all n-tuples (a₁, . . ., a_n), where a_k ∈ A (k = 1, . . ., n), and the elements a₁, . . ., a_n need not be distinct.
Then prove that B_n is countable.
(B) For x ∈ Rⁿ and y ∈ Rⁿ, define d(x, y) = (x - y)².
Determine, whether d is a metric or not. 6

OR

(C) If p is a limit point of a set E, then prove that every neighbourhood of p contains infinitely many points of E. 6

UNIT—III

3. (A) If R is a ring, then for all $a, b \in R$ prove that :

- $a \circ = o = oa$
- $a(-b) = -(ab) = (-a)b$ and $(-a)(-b) = ab$.

6

(B) If ϕ is a homomorphism of R into R' , then prove that :

- $\phi(o) = o'$ and
- $\phi(-a) = -\phi(a)$

for every $a \in R$, where R and R' are the rings and o, o' are additive identities of R, R' respectively.

6

OR

(C) Let R, R' be rings and ϕ a homomorphism of R onto R' with kernel U . Then prove that R' is isomorphic to R/U .
 (D) If U is an ideal of R , let $[R : U] = \{x \in R / rx \in U \text{ for every } r \in R\}$, prove that $[R : U]$ is an ideal of R and that it contains U .
 6

UNIT—IV

4. (A) Calculate $\int_C \frac{z dz}{(9-z^2)(z+i)}$ by using Cauchy integral formula, where C is the circle $|\tau| = 2$ described in positive sense.
 6

(B) Find the value of the integral $\int_0^{1+i} (x - y + ix^2) dz$ along the real axis from $z = 0$ to $z = 1$ and then along a line parallel to imaginary axis from $z = 1$ to $z = 1+i$.
 6

OR

(C) If $f(z)$ is analytic within and on a closed contour C , except at a finite number of poles $z_1, z_2, z_3, \dots, z_n$ within C , then prove that :

$$\int_C f(z) dz = 2\pi i \sum_{r=1}^n \text{Res}(z = z_r). \quad 6$$

(D) Prove that $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \frac{\pi}{6}$.
 6

5. (A) Let $A = \{x \in R / 0 < x \leq 1\}$ and $E_x = \{y \in R / 0 < y < x, x \in A\}$. If $E_x \subset E_z$, then prove that $0 < x \leq z \leq 1$.
 (B) If X is a metric space and $E \subset X$, then prove that $E = \text{closure of } E$ if and only if E is closed, where $E = \text{closure of } E$.
 1½
 (C) If $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supset K_{n+1}$ ($n = 1, 2, 3, \dots$), then prove that $\bigcap_1^\infty K_n$ is not empty.
 1½

(D) Prove that a set E is open if and only if its complement is closed. 6

UNIT-II

2. (A) Suppose $K \subset Y \subset X$. Then prove that K is compact relative to X if and only if K is compact relative to Y. 6

(B) If $\{K_\alpha\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_\alpha\}$ is nonempty, then prove that $\bigcap_\alpha K_\alpha$ is nonempty. 6

OR

(C) Let X be a complete metric space and let $\{G_n\}$ be a decreasing sequence of nonempty closed subsets of X such that $\lim d(G_n) = 0$. Then prove that

$$\bigcap_{n=1}^{\infty} G_n \text{ contains exactly one point.} \quad 6$$

(D) Let E be a subset of the real line R^1 . If $x, y \in E$ and $x < z < y \Rightarrow z \in E$, then prove that E is connected. 6

(D) Prove that every bounded infinite subset of R^k has a limit point in R^k . 1½

(E) Let R be a ring. If $a, b, c, d \in R$, then evaluate $(a+b)(c+d)$. 1½

(F) If R is a ring with unit element 1 and ϕ is a homomorphism of R onto a ring R', prove that $\phi(1)$ is the unit element of R'. 1½

(G) Show that $\int_C |z| dz = -2$, where C is the upper half part of circle $|z| = 1$. 1½

(H) What kind of singularity have the given function $\sin z - \cos z$ at $z = \infty$? 1½